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We present a detailed study of the solutions of the hypernetted chain integral 
equation inside the gas-liquid coexistence region for simple Lennard-Jones fluids. 
The study is performed by means of a hybrid Newton-Raphson algorithm 
extended to cope with complex solutions. In this way, we have unequivocally 
confirmed that the origin of the well-known HNC singular behavior inside the 
coexistence curve is linked to the onset of complex solutions. As density is 
increased starting from the vapor phase along isotherms inside the coexistence 
region, another singularity is encountered (very likely linked with the existence 
of a complex multiple solution point), and correlations start to diverge. There- 
fore, with the numerical approach here presented it is not feasible to join the 
liquid and vapor phases through an analytically continuous path of real and 
complex solutions. Finally, a study of the transition from the mean spherical 
approximation behavior (characterized by the presence of a spinodal divergence) 
to the peculiar hypernetted chain sort of singularity is also presented. 

KEY WORDS: Hypernetted chain; integral equations; gas-liquid equi- 
librium; phase transitions. 

1. INTRODUCTION 

It  has long  been  k n o w n  that  the hyperne t t ed  cha in  e q u a t i o n  ( H N C )  in 
systems that  u n d e r g o  phase  separa t ion  presents  a locus of no - so lu t i on  
poin ts  which  does n o t  coincide wi th  the onse t  of  t h e r m o d y n a m i c  
instabil i ty.  11-4~ This  feature has  also been  character ized in the P e r c u s -  
Yevick a p p r o x i m a t i o n  (PY)  for the adhesive hard-sphere  fluid ( A H S F )  (sl 
and  for the t w o - Y u k a w a  <6~ a n d  L e n n a r d - J o n e s  fluids, (7) t hough  in the P Y  
case the lack of  sp inoda l  decompos i t i on  is specific to the gas phase.  

Instituto de Quimica Fisica Rocasolano, CSIC, Serrano 119, E-28006 Madrid, Spain. 

825 

0022-4715/95/0800-0825507.50/0 �9 1995 Plenum Publishing Corporation 



826 Lomba and LOpez-Mart(n 

A very detailed and careful study by Belloni (8~ attributed the HNC 
peculiar singular behavior to the presence of square root branch points 
(SRBP) on the solution, which can easily be identified in the temperature 
dependence of the isothermal compressibility. The presence of this sort of 
singularity has been detected in a wide variety of systems, ranging from the 
Heisenberg spin fluid t91 to, and very specially, the restricted primitive 
model (RPM) of electrolytes, tl~ In this latter case the no-solution line is 
situated well outside the Monte Carlo prediction of the gas-liquid 
coexistence curve. ~ )  

It is then well established that the solution of the HNC equation has 
singular behavior that has seriously nonphysical features at and near the 
boundary of a "no-solution" region--a region that appears to signal the 
presence of phase coexistence. At first glance, it may appear to be a waste 
of time to pursue a detailed study of such features, since they are artifacts 
of the approximation. However, because the HNC continues to be such a 
widely used approximation (because it yields valuable information over 
large regions of thermodynamic space away from this locus) it seems to 
us of great interest to understand the precise relationship between the 
features that are physical and those that are nonphysical in and near this 
no-solution region. This paper aims to increase that understanding. In this 
connection, in order to attain a complete picture of the map of solutions 
of the HNC equation, the integral equation has to be solved in the complex 
plane, a problem that has been scarcely dealt with in the literature. We are 
only aware of a few attempts to solve numerically Ornstein-Zernike (OZ)- 
type integral equations in the complex plane. Cummings and Monson ~t2) 
investigated the real and complex solutions of the mean spherical 
approximations (MSA) for the attractive hard-core Yukawa fluid (HCYF) 
both analytically and numerically. The same authors developed an 
extension of Gillan's algorithm c13) to complex variables and studied the dif- 
ferent types of solutions of the MSA and PY approximations for HCYF 
and adhesive hard-sphere (AHSF) fluidsJ ~4) The same systems were also 
studied by means of a numerical procedure inspired by Baxter's factoriza- 
tion technique, which can appropriately handle nondecaying pair correla- 
tion functions. "5) In a different context Strndl and Kahl ~6~ also developed 
a complex Gillan algorithm, this time to solve a complex single superchain/ 
effective medium approximation (SSCA/EMA) closure coupled with the 
OZ equation, a problem that arises when dealing with the electronic den- 
sity of states or frequency spectrum in disordered media. Even though these 
mathematical problems are closely related (solving complex OZ equation), 
the physical nature of the complex solutions of interest is completely dif- 
ferent. In our case the complex solution is intrinsic to a problem charac- 
terized by real interactions, density, and temperature. In the context of 
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electronic densities-of-states (or frequency spectra) calculations in disor- 
dered media, the complex nature of the solutions comes into existence 
through complex effective densities which are the result of the mapping of 
a quantum problem into a classical one. t 17~ 

We thus intend to fill the aforementioned gap, presenting this study of 
the real (physical and unphysical) and complex solutions of the hyper- 
netted chain equation for one of the most interesting and simple fluid 
models, the Lennard-Jones system. Inside the complex solution region we 
have found that by increasing density along an isotherm one finds an addi- 
tional singularity which seems to be connected to the merging of multiple 
complex solutions, and marks the onset of diverging pair distribution func- 
tions (with long-ranged oscillatory tails). Very likely the outer boundary of 
this region coincides with the locus of SRBP on the liquid side of the phase 
diagram. An interesting question that also deserves to be scrutinized 
concerns the transition from the well-behaved MSA integral equation, 
always endowed with a spinodal divergence tS' 12) that hides the no-solution 
region, to the SRBP singularity that marks the onset of complex solutions 
in the HNC equation. In order to illustrate this transition, we here present 
an analysis of the low-density, low-temperature solutions of the hybrid 
mean spherical approximation (HMSA), ti8~ relaxing the thermodynamic 
consistency condition, for mixing parameters ranging from a plain HNC 
closure to a pure soft MSA (SMSA). 

The rest of the paper can be sketched as follows: the next section is 
devoted to a brief explanation of the technicalities required to deal 
efficiently with a hybrid Newton-Raphson algorithm on the complex plane. 
In Section 3 we present a detailed examination of the HNC solutions in the 
two-phase region focusing mainly on the inverse isothermal compressibility 
and the behavior of the correlation functions. Finally, a comparison with 
the well-established results of the MSA for the attractive HCYF system is 
introduced in Section 4, followed by the analysis of the transition from 
MSA-type to HNC-type singularities. 

2. SOLVING THE OZ EQUATION IN THE COMPLEX PLANE 

The algorithm for solving the OZ equation that we have generalized 
to allow for complex solutions is the hybrid Newton-Raphson proposed 
algorithm by Labik, Malijevsky, and Vonka (LMV). (19) The generalization 
to complex functions in principle does not pose special difficulties and we 
have relied on standard computer complex arithmetic and standard mathe- 
matical libraries (see IMSL routine DLINCG for an efficient procedure for 
the inversion of general complex matrices). However, we have found that 
convergence when approaching the singular points (SRBP) is very slow, 
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and it becomes extremely difficult, if not impossible, to enter the complex 
region using as initial estimate a lower-density real solution, even if the 
change in density is almost negligible. To overcome this difficulty we 
have devised an approach that has turned out to be extremely powerful in 
dealing with SRBP singularities. We have perturbed the OZ equation by 
adding a small imaginary parameter ie so that when written in Fourier 
space the equation reads 

PC(k)2 (2.1) 
P= k - p C ( k )  + ie 

where the tilde denotes a Fourier transformation, and F (k )=  k('h(k)- ~(k)), 
C(k)=k~(k) [h(r) and c(r) being the total and direct correlation func- 
tions]. Similar definitions hold for the r-dependent functions. The closure 
relation stays the same, and in the HNC approximation is 

C(r) = r exp[ -fiu(r) + F(r)/r ] -- F(r) - r (2.2) 

The expressions needed to apply to the LMV technique are identical to 
those proposed by Labik etal., (t9) but the Jacobian matrix has to be 
modified to account for the imaginary perturbing term, i.e., 

pC i ( 2 +  pC, 
J,.k=Oik k - ~ i + i  e k -~ j+ i i )  C,k (2.3) 

and C z k given by Eq. (13) of ref. 19. The effect of introducing this perturbing 
parameter can be assessed in Fig. 1, where we have plotted the evolution 
of the isothermal compressibility along an isotherm in the vicinity of the 
SRBP singularity, calculated using several e values ranging from 10 -~ 
to 10 -6. One sees that the SRBP gives rise to a rapid growth of the 
imaginary component of the isothermal compressibility (and hence of the 
imaginary component of the correlation functions). This sudden change 
affects the stability of the Newton-Raphson procedure, so that if e = 0, it 
is not possible to go from real to complex solutions, even if the density is 
increased by infinitesimal amounts. However, adding a small perturbing 
imaginary constant to the OZ equation has the effect of smoothing the 
transition, and in this way the complex solution becomes accessible to 
the numerical procedure without special difficulties. In order to recover the 
"true" OZ equation solution, one simply then sets e to zero, which actually 
has a very small effect on the solution, except in a tiny area around the 
singularity. Note that the use of this perturbing imaginary term also 
removes the real poles from the OZ equation and thus one can safely use 
this numerical solution procedure across the infinite singularities, as long as 
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Fig. I. Real and imaginary components of the HNC isothermal compressibility of a LJ fluid 
in the vicinity of the SRBP singularity. Dependence on the perturbing imaginary e parameter 
[see Eq, (2.1)]. 

the proper E--* 0 limit is taken once the singularity has been bypassed, and 
provided a sufficiently large integration range is chosen. 

Once inside the complex region, by stepwise lowering of the density, 
the real solution is eventually recovered, but we have found that our proce- 
dure ends up at the unphysical branch in all cases. This peculiar behavior 
may be taken profit of in order to generate the set of unphysical real 
solutions, which according to Belloni are somewhat hard to produce when 
starting from the physical low-density real branchJ 8) 

3. THE COMPLEX SOLUTIONS REGION 

In the previous section we presented the numerical scheme needed to 
investigate the behavior of the integral equation inside the two-phase 
region. The quantity of interest to be monitored is the inverse isothermal 
compressibility 

fl (~-~P~- - = l - p ~ ( 0 )  (3.1) 
\ u / J /  T 

a quantity that vanishes at the spinodaI decomposition curve. We have 
focused on the p dependence of this quantity along several isotherms, as 
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Inverse isothermal compressibility for a LJ fluid along several subcritical isotherms. 
Real (solid curves) and imaginary (dashed curves) components. 

can be seen in Fig. 2, where we have plotted both its real and imaginary 
components. Note that, as expected, the onset of complex solutions 
corresponds to a double solution point, the SRBP. We see that for 
T * =  0.56 one finds a complete loop formed by the locus of real physical 
solutions (upper branch) and real unphysical solutions (lower branch). 
These two branches meet at the SRBP, as was first found by Belloni, c8} and 
then the solution continues in the complex plane. Also in accordance with 
the findings of Belloni, at higher T* the loop unties and several double 
solution points show up (of which we have only plotted the closest to the 
HNC termination point). This untying of the loop as T* increases is 
needed if the inverse compressibility curve is to evolve smoothly from the 
convex subcritical curves to the characteristic concave upper-critical curves. 

From Fig. 2 there is no doubt that the low-density behavior has little 
in common with the spinodal divergence. When density increases one finds 
an additional singularity, which we have analyzed in detail only for 
T * =  1.1. The isothermal compressibility along this isotherm is represented 
in the complex region in Fig. 3. This figure shows the dependence of the 
quantity on the number of integration points used in the numerical proce- 
dure, or, more properly, on the integration range. As a matter of fact we 
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Fig. 3. Dependence of the isothermal compressibility of the integration range inside the 
complex region. The singular region (onset of diverging correlations) shrinks as the range is 
increased. Curves are labeled with the number of grid points used in the calculation. The 
primed label corresponds to a double independent solution obtained. 

have found that 8"192 grid points and a grid size 0.05a lead to the same 
results as 16,384 points and a grid size 0.025tr. The results finally converge 
for 16,384 grid points, showing no further integration range dependence, at 
least up to the singularity. As the integration range is increased, the extent 
of the singularity shrinks, but the numerical procedure becomes more 



832 Lomba and L6pez-Martfn 

unstable. Only using 4096 grid points, our numerical procedure could 
reproduce a second family of solutions, merging close to the singularity, 
but we believe that for larger integration ranges the multiple solutions must 
still be present. The merging of complex solutions is very likely the cause 
of the numerical instability we have encountered when solving the equation 
in tl~s region. 

When crossing the singularity the correlations become extremely long- 
ranged with clear long-wavelength oscillatory tails, and the numerical pro- 
cedure becomes unstable. An analysis of the functions in k space shows that 
the long-ranged oscillations stem from the presence of a singular point in 
k which is almost a real pole of Eq. (2.1) (with e = 0). One finds that on the 
right side of the singularity for a given ko, Re{1-p?(k0)} = 0  with 
Im{pg(ko)} being very small. As a matter of fact both quantities change 
sign in the neighborhood of ko, but using a discretized algorithm, is not 
possible to assess whether ko is a "true" pole, but the effect on the corre- 
lation functions is what one would expect from the presence of a pole for 
finite-k, long-range oscillatory behavior with a wavelength k o. Notice 
that Root and Lovett reported the existence of long-ranged oscillatory 
real correlations in solution of a one-dimensional YBG equation. (2~ Yet, 
our correlation functions decay more rapidly than cos(kor)/r, since the 
singularity is not a proper pole, but this might be a numerical artifact. 
In any case, if one proceeds further to higher densities, the divergence 
becomes more dominant, and the numerical results become meaningless. 
A similar phenomenon was described by Monson and Cummings in the 
PY solutions of the AHS fluidJ 14) The authors noticed that at intermediate 
densities the numerical and analytical results did not agree inside the 
complex region, which was easily explainable since the analytical results 
indicated that h(r) became progressively divergent inside that region. This 
suggest that a Baxter-type method as presented in ref. 15 might be an alter- 
native to bypass this difficulty. The application of these types of numerical 
methods to the HNC integral equation is, however, somewhat problematic, 
since this approximation does not fulfill c(r)= 0 for r=Rc, with Rc a 
reasonable cutoff distance (like the interaction cutoff), a desirable feature 
for an easy implementation of the original Baxter formulation. 

There are a few observations to be made concerning the p dependence 
of the isothermal compressibility. First, one notices that the region of 
diverging h(r) shrinks as the temperature increases. Accordingly, the 
isotherm T * =  1.35, even though still crossing the nonsolution region, 
lacks any singularity. As T* is lowered, the high-density SRBP takes the 
appearance of a spinodal divergence, as mentioned before (see also ref. 10, 
and obtaining the complex solutions which start at this singularity is not 
feasible, since correlations diverge in this portion of the complex solution 
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Fig. 4. Complex-solutions boundary of the HNC (solid line). The dotted line represents 
a portion of the locus of singularities inside the complex regions that marks the onset of 
diverging pair distribution functions. 

region. In Fig. 4 we have represented the boundary of complex solutions 
together with the locus of complex singularities. One might speculate 
whether this latter curve might have some connection with a hypothetical 
spinodal line hidden inside the complex solution region. Such a spinodal 
line inside the complex region can be determined in the analytical solution 
of the AHSF in the PY approximation, (5~ but it is inaccessible to the 
type of numerical procedure we use here. There is another aspect to be 
mentioned, and it concerns the two types of real solutions of the integral 
equation at subcritical T* close to the SRBP singularities. The existence 
of physical and unphysical solutions in the vicinity of these sorts of 
singularities was first pointed out by Belloni (8~ for the HCYF in the HNC 
approximation. In this case it was found that both solutions are perfectly 
compatible with the integral equation, and are no t  ar t i fac t s  of the 
numerical procedure. Both correlation functions decay to zero and there is 
nothing to object to in any of them, except that the unphysical solution 
yields an isothermal compressibility that decreases with density along the 
subcritical isotherm in the gas phase, a behavior improper of a vapor. In 
this connection, we have found that the same features hold for the LJ fluid. 
In Fig. 5 we illustrate the physical and unphysical correlation functions 
for a state close to the SRBP. Very likely, if analyzed in the framework of 
the treatment of Schlijper and co-workers, C2-4) one would find that the 
unphysical solution does not correspond to a minimum of the HNC free 
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Total correlation function for the physical and unphysical solutions of the HNC 
equation in the LJ fluid at T * =  0.56 and p * =  0.008. 

energy functional, but to a local maximum or saddle point; this, though 
consistent with the fact that the termination points of the HNC (SRBP) are 
saddle points of the free energy surface, (3"4) has not been proven. Unfor- 
tunately, the hybrid Newton-Raphson method we use does not provide 
information on the complete Jacobian matrix of the integral equation, and 
therefore the elegant analysis of the free energy Hessian presented in ref. 4 
is beyond our reach at present. We have met here an essential difference 
with respect to the MSA solution of the HCYF. In this case the inverse 
isothermal compressibility also exhibits a similar loop, but with the double 
solution point at densities higher than the spinodal (see next section). The 
solutions on the unphysical branch correspond now to diverging pair dis- 
tribution functions. ~2) By contrast, in our case the only difference between 
the physical and unphysical correlation functions is the much higher first 
peak and presence of a shoulder around the second coordination shell in 
the unphysical solution. Both correlation functions indicate a large amount 
of clustering around the particle at the origin. 

For the sake of completeness, in Fig. 6 we present the real and 
imaginary components of the total correlation function h(r) for several 
densities close to the boundary. The physical meaning of these functions, if 
any, is not easy to grasp. Both components have the appearance of well- 
behaved correlation functions with large values in the first coordination 
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Fig. 6. Real and imaginary components of the total correlation function for the LJ fluid at 
T * =  0.56 in the vicinity of the boundary. 

shell, and little else can be inferred from them. We see that in the neighbor- 
hood of the SRBP, small increments in density are associated with a rapid 
growth of the imaginary component of the correlation functions. This is the 
main reason for the lack of stability of numerical solutions in this region. 

Finally, at this stage, we ought to mention that the results here pre- 
sented were obtained using 8192 mesh points and a grid size Ar = 0.025tr. 
Several calculations were carried out with 16,834 points and/or grid size 
0.05a to guarantee the accuracy of the results. 

4. H N C  VS .  M S A - L I K E  B E H A V I O R  

In the previous section we already mentioned that there are some sub- 
stantial differences in the behavior of the HNC and MSA integral equa- 
tions when approaching the two-phase boundary. To illustate more clearly 
these differences, in Fig. 7 we show the p dependence of the inverse isother- 
mal compessibility of  the HCYF in the MSA, both in complex and in real 
space. In contrast with our observations on the HNC approximation, here 
this quantity vanishes approaching the axis with zero slope, and as a result 
the physical branch has opposite convexity when compared with the HNC 
result. One then enters a region of diverging h(r) which ends at a double 

822/80/3-4-22 
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Fig. 7. Inverse isothermal compressibility of the attractive HCYF in the MSA approximation. 

solution point, where the physical (lower) and unphysical (upper) branches 
meet. The relative position of physical and unphysical branches in the 
HNC is inverted, as can be seen in Fig. 2. In the MSA, for higher densities 
the solution enters in the complex region, which ends at another double 
solution point, and then the high-density spinodal is encountered, thus 
forming a rather symmetric plot. 

It is possible to have a more clear picture of the transition between 
MSA-like and HNC-like behavior by resorting to the HMSA closure, 
namely 

g(r): {exp[-flul(r) ] } [1 +exp{f(r)[-flu2(r) + h(r)-c(r) ]} - l (4.1) 

where ul and u2 are the repulsive and attractive components of the poten- 
tial split according to the Weeks-Chandler-Andersen prescription (~8~ and 
f(r) = 1 - e x p ( - ~ r )  is the mixing function. Contrary to the proper HMSA 
formulation, we will not require here thermodynamic consistency to deter- 
mine the value of ~. Moreover, in the gas phase, which is the one we are 
now more interested in, thermodynamic consistency forces the HMSA to 
behave more and more HNC-like as the density is lowered. ~18~ We have 
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Fig. 8. Inverse compressibility for various HMSA-type approximations [see Eq. (4.1)]. Solid 
curves denote physical branches, dotted curves unphysical branches, and dashed lines 
correspond to the real component of the complex solution. The calculations correspond to the 
T* = 0.56 isotherm. 

studied the isotherm T * =  0.56 for a variety of ct values, ranging from the 
SMSA ( ~ = 0 )  to the HNC (ct= oo). The evolution of the inverse com- 
pressibility for the different closures considered is summarized in Fig. 8. 
Together with the physical and unphysical branches of real solutions, a 
portion of the real component of the complex solution has been included 
as well. From Fig. 8 one can readily see how increasing the MSA compo- 
nent breaks the original HNC loop, by which one then finds several double 
solution points, from which the complex solutions can be accessed. Only a 
limited number of these points have been shown on the plot, and solely for 
ct = 1, since proceeding further becomes computationally more cumbersome 
as the correlation functions turn into slowly decaying functions and the inte- 
gration range has to be increased. As the MSA component is augmented 
(the value of ~ is lowered), the complex region comes into existence at 
higher densities and the value of the inverse isothermal compressibility at 
the endpoint is smaller, until the SMSA curve is reached. This curve ends 
up at fl(dP/dp)=O, that is, at the spinodal line and with zero slope, 
precisely the well-known behavior of the analytic MSA solution for the 
attractive HCYF (see Fig. 7). We have been unable to continue the SMSA 
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solution for higher densities, probably due to the fact that our solution 
method is inappropriate to handle diverging h(r) functions. Nonetheless, 
Fig. 8 explains how the transition from HNC to MSA can be smoothly 
accomplished, and why physical and unphysical branches exchange posi- 
tions when going from one approximation to the other. Notice that a 
similar untying of the HNC loop occurs when the temperature is raised 
(see Fig. 2) and is also due to the continuity of the transition between 
curves of opposite convexity (supercritical vs. subcritical and MSA vs. 
HNC). 

We have presented a detailed analysis of the HNC approximation 
behavior at subcritical temperatures, with emphasis on the low-density 
(vapor-phase) behavior. We have shown unequivocally that the peculiarities 
of the HNC behavior in the vicinity of the coexistence curve stem from the 
onset of complex solutions. This does not preclude, but complements other 
explanations which connect the singularity with the loss of local convexity 
of the HNC free energy. (2-4~ At very low densities, where the HNC is nearly 
an exact theory, it is clear that the bridge function (though it vanishes 
quadratically with density) must play a "fine-tuning" role that should shift 
the complex solution boundary into the limits of the spinodal line. The 
recently proposed INV integral equation c21) for the RPM of electrolytes 
has been shown to have the boundary of the nonsolution line at con- 
siderably lower temperatures than those reached by the HNC (which are 
known to be well off the simulated values). ~22~ The properties of this and 
related closures might give some clue to future improvements of integral 
equation theories in the vicinity of the two-phase region. 

ACKNOWLEDGMENTS 

The authors would like to thank Prof. G. Stell and Prof. L. L. Lee 
for their critical reading of the manuscript and their helpful suggestions. 
Fruitful correspondence with Dr. P. A. Monson and Prof. M. M. Telo da 
Gama is also acknowledged. This work has been financed by the Spanish 
Direcci6n General de Investigaci6n Cientifica y T~cnica (DGICYT) under 
grant no. PB91-0110. 

REFERENCES 

1. E. Lomba, in Supercritical Fluids. Fundamentals for Application, E. Kiran and J. M. H, 
Levelt-Sengers, eds. (Kluwer, Dordrecht, 1994). 

2. A. G. Schlijper, M. M. Telo da Gamma, and P. G. Ferreira, J. Chem. Phys. 98:1534 
(1993). 

3. P. G. Ferreira, R. L. Carvalho, M. M. Telo da Gama, and A. G. Schlijper, J. Chem. Phys. 
101:594 (1994). 



Hypernetted Chain Equation 839 

4. A. G. Schlijper, L. E. Scales, J. E. Rycroft, M. M. Telo da Gama, and P. G. Ferreira, Int. 
J. Thermophys., to be published. 

5. P. T. Cummings and G. Stell, J. Chem. Phys. 78:1917 (1983). 
6. F. Gallerani, G. Lo Vecchio, and L. Reatto, Phys. Reo. A 32:2526 (1985). 
7. F. Gallerani, G. Lo Vecchio, and L. Reatto, Phys. Rev. A 31:511 (1985); B. C. Freasier 

and R. J. Bearman, J. Chem. Phys. 100:3094 (1994). 
8. L. Belloni, J. Chem. Phys. 98:8080 (1993). 
9. E. Lomba, J. J. Weis, N. G. Almar'za, F. Bresme, and G. Stell, Phys. Reo. E 49:5169 

(1994). 
10. J. S. Hcye, E. Lomba, and G. Stell, Mol. Phys. 79:523 (1993). 
11. J. M. CaiUol, J. Chem. Phys. 100:2161 (1994). 
12. P. T. Cummings and P. A. Monson, J. Chem. Phys. 82:4303 (1985). 
13. M. J. Gillan, Mol. Phys. 38:1781 (1979). 
14. P. A. Monson and P. T. Cummings, Int. J. Thermophys. 6:573 (1985). 
15. P. T. Cummings and P. A. Monson, Int. J. Thermophys. 11:97 (1990). 
16. C. F. Strndl and G. Kahl, J. Phys.: Condens. Matter. 5:6801 (1993). 
17. D. E. Logan and M. D. Winn, J. Phys. C 21:5773 (1988); B. C. Xu and R. M. Stratt, 

J. Chem. Phys. 5613 (1989). 
18. G. Zerah and J. P. Hansen, J. Chem. Phys. 84:2336 (1986). 
19. S. Labik, A. Malijevsky, and P. Vonka, Mol. Phys. 56:709 (1985). 
20. L. J. Root and R. Lovett, J. Chem. Phys. 95:8390 (1991). 
21. D. M. Duh and A. D. J. Haymet, J. Chem. Phys. 97:7716 (1992). 
22. F. Bresme, E. Lomba, J. J. Weis, and J. L. F. Abascal, Phys. Reo. E 51:289 (1995). 


